(2)

(Printed Pages 7)

J

https://www.rmlauonline.com

3711

B.Sc. (Ag.) (Hons.) End Semester

Examination, 2020

Semester-I

Paper - XI

(Elementry Mathematics/Basic

Agriculture-II)

Time: Three Hours] [Maximum Marks: 50

Note: The question paper is divided into three

Sections A, B and C. Answer the questions

of each section as per instructions.

Section - A

Note: This section contains only one question, having ten (10) parts. Each part carries 1 mark. Answer the questions in very short.

1. (a) Out of the following

axis.

(i) x = 3 (ii) y = 3 and (iii) y = 3x+5 which one is equation of line parallel to x-1

(b) Find the angle between the lines y = x+2 and y = -x-2.

(c) Show that the area of the triangle with vertices

(0, 0), (1, 0) and (0, 1) is 1/2 units.

(d) The centre of the circle $x^{2} + y^{2} - 2x - 4y + 1 = 0$ is the point (1, 2). Find its radius.

(e) Write down the condition under which the line y = mx + c touches the circle

https://www.rmlauonline.com

https://www.rmlauonline.com

P.T.O.

https://www.rmlauonline.com

3711

https://www.rmlauonline.com

(3)

 $x^2 + y^2 = a^2.$

- (f) The equation of normal at the point
 (a cos θ, a sin θ) of the circle is y = x tan
 θ. Prove it.
- (g) Define the continuity of a function at a point.
- (h) Write down the formulae for derivatives of the product and quotient of two functions.
- (i) In the formula $\int f(x) dx = g(x) + C.$

What are the values of C.

(j) Write down two differences in between matrices and determinants.

Note: Attempt all the **five** questions of this section. Each question has an internal option.

Give answers in about 200 words. Each question carries 5 marks.

 Find the equation of straight line orthogonal to y-x=8 which passes through the point of intersection of x+2y+3=0 an 3x+4y+7=0.

OR

Find the equation of straight line parallel to x/a + y/b = 1 and passing through (a, b).

https://www.rmlauonline.com

 Find the equation of circle having centre at (2, -1) and passing through (3, 6).

OR

Prove that equation of the circle having (1, 2)and (3, 4) as extremities of one of its diameter is $x^2 + y^2 - 4x - 6y + 11 = 0$

3711

https://www.rmlauonline.com

https://www.rmlauonline.com

https://www.rmlauonline.com

https://www.rmlauonline.com

(5)

Test the function:

$$f(x) = \begin{cases} 4x + 3 & x \neq 4 \\ 3x + 7 & x = 4 \end{cases}$$

OR

Find the differential coefficient of ex from first principle.

Prove that
$$I = \frac{1}{2}(\sin x - \cos x) e^x$$

OR

Evaluate
$$\int_0^{\pi/4} \tan^3 x \sec^2 x \, dx$$

For the matrices 6.

3711

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 0 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & 1 & 0 \end{bmatrix}$$

find the product AB. Can we form the product BA.

https://www.rmlauonline.com

P.T.O.

$$f(x) = \begin{cases} 4x + 3 & x \neq 4 \\ 3x + 7 & x = 4 \end{cases}$$
for continuity at x = 4

Given $I = \int e^x \sin x \, dx$

Prove that
$$I = \frac{1}{2} (\sin x - \cos x) e^x$$

Evaluate
$$\int_0^{\pi/4} \tan^3 x \sec^2 x \, dx$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 0 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & 1 & 0 \end{bmatrix}$$

then prove that

OR

Find the value of the determinant

$$\begin{vmatrix}
1 & w & w^2 \\
w & w^2 & 1 \\
w^2 & 1 & w
\end{vmatrix}$$

where w is cube root of unity.

Section - C

Note: Attempt any two questions. Each question carries 71/2 marks. Give answer in detail.

https://www.rmlauonline.com

- Change the equation x/2 + y/3 = 1 of a straight line into normal form.
- Does the line x + y = 2 touch the circle $x^2 +$ $y^2 = 2$? If yes, find the point of contact.

9. If
$$y = x^{x}$$
.

$$\frac{dy}{dx} = \frac{y^2}{x(1 - \log y)}$$

3711

https://www.rmlauonline.com

https://www.rmlauonline.com

Find the area of the positive quadrant of the ellipse

$$x^2/a^2 + y^2/b^2 = 1$$
.

11. Find Inverse of the matrix.

$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & 1 & 0 \\ 3 & 2 & 0 \end{bmatrix}$$

https://www.rmlauonline.com

https://www.rmlauonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्य,

Paytm or Google Pay 🕏