(2)

(d) Find the value of $\int_0^1 x^3 d(x^2)$

(e) Define measurable set.

(f) Give a example of uncountable set of measure zero.

(g) Show that every constant function is measurable.

(h) Define $||f||_p$ for $f \in L^p(a,b)$

(i) State Jonsen Inequality.

(j) Define downward convex function f(x).

Section - B

Note: Attempt **all** questions. Each question carries 10 marks. $5 \times 10 = 50$

 If f is continuous and g is monotonically non-decreasing on [a, b]
 Then f∈RS(g).

OR

If $f \in RS(g)$ and $|f(x)| \le k \text{ on}[a,b]$ then prove that $\left| \int_a^b f dg \right| \le k (g(b) - g(a))$

2230

https://www.rmlauonline.com

2230

M.A./M.Sc. (Previous) Examination, 2022 MATHEMATICS

Paper - II

(Advanced Real Analysis and Measure Theory)

Time: Three Hours] [Maximum Marks: 100

Note: Attempt all sections as per instructions.

Section - A

Note: Attempt **all** parts of this question. Each part carries 2 marks. 2x10=20

- (a) Write the condition under which f(x) is Riemann-Stieltjes integrable.
 - (b) Show that every real function of bounded variation on [a,b] is bounded.
 - (c) Can the brackets be removed from the series

$$\left(1-\frac{1}{2}\right)+\left(1-\frac{3}{4}\right)+\left(1-\frac{7}{8}\right)+\dots$$

P.T.O.

https://www.rmlauonline.com

(3)
3. Suitably re-arranging the series

$$S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

prove that $S = \frac{1}{2}S$. Explain Fallacy.

OR

If f and g are functions of bounded variation on [a, b] then prove that f+g is also function of bounded variation on [a, b].

 For every set A prove that m_{*}A ≤ M*A where m_{*} stands for lower measure and m* stands for outer measure.

OR

If m*E=0, then E is measurable.

 Prove that every continuous function is measurable. https://www.rmlauonline.com

OR

Show that a countable set is measurable and its measure is zero.

If f∈L^p and g ≤ f then g∈L^p.

OR

If f and g are bounded function and Lebesgue integrable over [a, b] and if $f(x) \ge 0$ a.e on [a, b] then $\int_a^b f(x) dx \ge 0$.

2230 P.T.O.

(4) Section - C

Note: Attempt any **two** questions. Each question carries 15 marks. $2 \times 15 = 30$

- 7. If f is R-integrable on [a, b] and g is monotonically non-decreasing function on [a, b] such that g' is R-integrable on [a, b] then f∈RS[a,b] and ∫_a^bfdg=∫_a^bf(x) g'(x)dx.
- 8. If f and g be functions of bounded variation on [a, b] and f is also continuous on [a, b] then $\int_a^b f dg = f(b)g(b) f(a)g(a) \int_a^b g df$
- 9. Show that $\int_0^3 x \, d\{[x] x\} = \frac{3}{2}$.
- Every bounded function defined on [a, b] is Lebesgue integrable.
- 11. If f ∈ L^p[a, b], g ∈ L^q[a, b] for p>1 where L^q[a, b] is conjugate of L^p[a, b] then show that fg ∈ L^p[a, b] and ||fg|| ≤ ||f||_p||g||_q